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Design of Transformerless Quasi-Broad-Band
Matching Networks for Lumped Complex
Loads Using Nonuniform
Transmission Lines

ISAO ENDO, YOSHIAKI NEMOTO, MEMBER, IEEE, AND RISABURO SATO, FELLOW, IEEE

Abstract —A simple design method for transformerless and lossless
quasi-broad-band matching of a lumped RC load is presented by use of a
parabolic nonuniform transmission line. The key idea in removing an ideal
transformer from the matching network is based on impedance transforma-
tion of the nonuniform transmission line, whose mixed lumped and distrib-
uted equivalent circuit contains an ideal transformer. Also, illustrative
examples and some design curves are presented.

I. INTRODUCTION

HE CLASSIC MATCHING problem was initiated by

Bode [1] for complex RC and RL loads and solved
by Fano [2] for an arbitrary load impedance. Youla [3]
refined the new theory of broad-band matching based on
the principle of complex normalization, Fano’s and Youla’s
techniques have been extended and elaborated by many
authors [4]-[10]. Recently, Carlin er al. have developed a
CAD method called the real frequency method [11]-[14].

In the field of microwave engineering, many design
methods also have been established by using distributed
parameter elements such as quarter-wave transformers,
noncommensurate lines, nonuniform transmission lines,
and so on [15]-[22].

A passive broad-band matching network, according to
Youla [3], may be designed by starting from a calculation
of the gain—bandwidth restriction imposed by the pre-
scribed load. The resulting matching network will often
contain an ideal transformer to satisfy the gain—bandwidth
restriction except in special cases. In practice, the realiza-
tion of the ideal transformer is difficult, and should be
avoided unless it can be realized as a coupled-line trans-
former.

In this paper, we present a simple design method using
parabolic tapered nonuniform transmission line (PTL) to
achieve transformerless and lossless quasi-broad-band
matching between a resistive generator and a complex
load. By using PTL, we can eliminate an ideal transformer
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from the matching network. However, this will cause a
decrease of theoretical maximum gain prescribed by the
broad-band matching theory [3]-[5]. Since the broad-band
matching theory requires the best gain performance in the
passband, our proposed matching technique may be termed
quasi-broad-band matching. A PTL, whose equivalent cir-
cuit is represented by mixed lumped and distributed ele-
ments, can transform the lumped series RC loads into.a
different lumped impedance. This transformation: of the
load results in a new impedance, mainly dependent on the
taper ratio of the PTL prior to calculation of the
gain—-bandwidth restriction. Recalculation of the restric-
tion to the transformed load impedance gives a modified
restriction equation which contains the taper ratio of the
PTL explicitly. We are able to find this taper ratio by
solving a simple nonlinear equation so as to avoid the ideal
transformer in the matching network structure. The maxi-
mum obtainable gain for this transformed impedance will
be lower than that of the original one.

II. IMPEDANCE TRANSFORMATION WITH PARABOLIC
TAPERED TRANSMISSION LINE

The characteristic impedance distribution of the para-

bolic tapered transmission line (PTL) is given by [23], [24]
1 x\°

1+ —— 1

=7 B

where W, is the front-end (x=0) characteristic imped-

ance, K, is a positive constant, and [ is the line length of
the PTL. A PTL loaded by a lumped series RC impedance

z, 1
(2)

Z, =R, +
is shown in Fig. 1(a) and its equivalent circuit is shown in
Fig. 1(b) [23]. In the equivalent circuit, element values are
given as follows:

W(x)= Wo

joCy

3

(4)
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1
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1
WO = k2WO
C,=(1+K)I/(k*Wp)
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Fig. 1.

where v denotes the velocity of the wave. If weset C, = C,

and W, = R, then the driving-point impedance Z; be-
comes [24]
R, 1
Z,=—+ . 6
Lk? o jekC, ©)

A PTL having a parameter value k larger than unity
decreases the real part of the original load impedance and
must be determined prior to the design of a quasi-optimum
impedance matching network.

ITI. GAIN—-BANDWIDTH RESTRICTION FOR QUASI-BROAD-
BAND MATCHING NETWORK DESIGN IMPOSED

BY THE TRANSFORMED LOAD

Consider the scheme of broad-band matching shown in
Fig. 2. Our objective is to match the transformed load Z,
in (6) to a resistive generator with a lossless and trans-
formerless two-port network. Since the series RC load is a
high-pass circuit, we consider an nth order high-pass
Butterworth transducer power gain characteristic between
the generator and the load,

K(w/w,)™"
G(w2)=—'(‘/—6)—27, 0<Kk<1 (7)
1+(w/w,)
where «, is the 3-dB radian frequency and K is the

maximum gain at  — 0.

To obtain a gain—bandwidth restriction imposed on the
matching network N by the load, we employ the well-
known broad-band matching theory [3], [4]. The series RC
load Z; possesses a class IV zero of transmission of order
1 at the origin. To apply the theory, consider the following
steps.

Let s(s) be the minimum-phase reflection function de-
termined from factorization of the equation

s(s)s(—s)=1-G(-s2). (8)

A real regular all-pass function b(s) is defined by the

poles of Z,(—s) in Re{s} > 0. For the series RC load,
this is given by

b(s) =1

since the only such pole is at the origin.
Let f(s) be

f(s)=2b(s)Ev{Z,(s)} =2R,/k* (10)
where Ev{Z,(s)} is the even part of the load impedance.

(©)
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(a) The parabolic tapered transmission line loaded by lumped series RC 1mpedance and (b) its equivalent circuit.

E Network

r C
g L
O O
+ Transformerless
Matching
R
L
O~

N | o |

292

Fig. 2 The scheme of the broad-band matching problem with PTL.

For a class IV zero of transmission of order 1 at the
origin, the basic constraint imposed by the load becomes

C:R @
1-(1- k)" <20, Lk = -sin(g). (11a)
And this equation may be solved for the gain K as
C,R, 7\ 2"
K<1—{1—2wc -sin(z—)} (11b)
n

Fulfillment of this gain—bandwidth restriction ensures the
positive-reality of the back-end impedance Z,,(s), which
is given by

Za) g 2. @)

Equation (11a) or (11b) shows that the use of a PTL
(constrained to k >1) causes the decrease of maximum
gain K. In compensation for this decreased gain, the ideal
transformer is removed from the matching network. In the

limit as n — co,
2n
L . T
sin | —
(2n)> ]

=1—exp(—2n0C, R, /k). (13)

Equation (13) shows that the reflection attenuation is
proportional to C; R, /k.

Under the assumption that the two-port network N in
Fig. 2 contains only the the high-pass transformerless
ladder structure, the maximum gain G obtained at w — oo
is given by

C.R
K< lim 1—{1—2%
n—w k

4r R, k2
G(o0) = —=—=

(RLk”2 + rg)2 .

(14)

From the high-pass transducer power gain characteristic of
(7), the maximum attainable gain K in (11b) is achieved at
w—>oo. When the gain K equals the infinite-frequency
transducer power gain G(oc), the two-port network N does
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Fig. 3. The maximum attainable gain K as a function of order n.

not contain an ideal transformer. Namely,

C,R 7 \) 2" 4r R k2
1—{1——2wc L L-sin(-—)} =—8L———5. (15)
k 2n (RLk‘2+rg)

This nonlinear equation may be solved for a parameter k
by numerical methods such as bisection.

Before solving (15) it is necessary to consider the case
achieving unity gain. If the inequality

20C R k™ sin(7/2n) >1

is established under the condition k = /R, /r, we can set

K =1 as the maximum gain. A PTL having k=yRy/r,
transforms the resistive part of the load R; into r,, and

there 1s no need to use an ideal transformer in the match- -

ing network structure. In this case the PTL method may be
able to stand comparison with an ordinary broad-band
matching. It is interesting to note that using an equivalent
representation of the PTL, the resulting matching network
structure will appear to be a typical R-R high-pass filter
with Butterworth response.

Except for the case of K =1 mentioned above, it is
necessary to solve (15) numerically for the parameter k

such that
1<yR, /1, <k. (16)

The available gain is then given by (11b) using the equals
sign. It is obvious that the maximum obtainable gain K
will be decreased by the taper ratio & of the PTL. If we
accept the decreased gain and select a maximum gain with
optimum k in (11b), the quasi-broad-band matching will
be achieved without an ideal transformer.

The maximum attainable infinite-frequency gain K,
which may be called the quasi-optimum gain, can be

calculated by finding the optimum k as a function of n,
a=wC R, and R, the resistive part of the load Z;. The
relation between order n and the quasi-optimum gain X is
presented in Fig. 3(a) for R, = 2% and in (b) for R, =4 Q.
The plots of gain K as a function of a=wC, R, are
shown in Fig. 4(a) and (b). Plots of gain K as a function of
R,, for a=1, are shown in Fig. 5. In these figures, the
generator resistance is normalized to unity, namely r,
=1Q.

The parameter a is the normalized cutoff angular
frequency, and a large a means high cutoff frequency and
narrow bandwidth. An inspection of these curves shows
that

1) the gain K is almost identical throughout a large
variation of order n, while there exists an optimum
gain for a specified « that is attained at a low value of
n;

2) K increases as R; approaches unity; and

3) K increases as « is increased.

For practical applications, it is useful to note that the
characteristic impedance of a PTL will be equal to R, at
the far end (x =/) and will be close to r, at the front end
(x = 0) when the gain K is close to unity. The line length /

of the PTL is dependent on R;, C;, and k and is given by
I=(1-k"YHYoC,R,. (17)

IV. EXAMPLES

Example 1

As an example, consider the series load impedance of
a 100 Q resistor and a 0.75 pF capacitor. It is desired
to match this load to a resistive generator of internal
resistance 50 ), and to achieve fifth-order high-pass
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Fig. 4. The maximum attainable gain X as a function of a= w C; R;.

Butterworth transducer power gain. The cutoff radian
frequency is 100 rad/s.

For simplicity, the load impedance is normalized to
R,=350 © and to an angular frequency w,=10'" rad/s.
This results in the normalized quantities 7,=1 2, R; =2
Q, C;=0375F, w,=1rad/s, and a=0.75.

Applying an ordinary broad-band matching network
design procedure [3], we can achieve almost unity maxi-
mum attainable gain

K=1-{1-20C, R, sin(—n/2n)}"
= 0.9980253
but achieving the above gain between the resistor r, =1 {
and R, =2 Q at infinite frequency requires an ideal
transformer with a transformation ratio of 1:1.478518.

To design a transformerless quasi-broad-band matching
network employing the proposed technique, we first must
determine k, the optimum taper ratio of the PTL. For the
given specification and the trial value of k = /R, /1, = V2,
we compute

20, C, R, k™ sin(m/2n) =0.3277620 <1.
In this case, it is not possible to obtain unity gain as
described in Section III, so we have to solve (15) for a
suitable value of k, giving
k =1.764933
and the corresponding maximum gain K is obtained as

K =0.9524828.
This is smaller than unity, and is 0.2 dB attenuation in
passband.
For constructing the back-end impedance Zy,(s), the
needed minimum-phase reflection function s(s) may be
obtained from (7) and (8) as

1.@

RL=4[Q]

—_— C_R.
wcLL

? -]

—_— RL 93]

Fig. 5. The maximum attainable gain K as a function of R;.
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(a) The normalized back-end driving point impedance Z,, and

(b) the denormalized matching network structure without an ideal

transformer,

1+2.386177s +2.8469215% +2.0992325> +0.95666045* +0.2179843s°

s(s)=

The back-end impedance Z,,(s) in (12) is given by

f(s) 0.2979929s +0.8376945s2 +0.9996655> +0.5175769s*

1+3.236068s +5.2360685% +5.236068s> +3.236068s* + s°

(18)

. (19)

Z = 7 =
2(5) b(s)—s(s) 108) = 0 5625000+ 1.5812565 + 20761145 +1.5086255° + 0.51757695°
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ideal transformer
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Fig. 7. The frequency response of the attenuation.

This driving-point impedance is realized by an LC ladder
as shown in Fig. 6(a) with no ideal transformer. The
denormalized matching network is also shown in Fig. 6(b).
The free-space line length of the PTL needed is [=
0.9751637 cm for this case.

The frequency response of the attenuation between gen-
erator and load is shown in Fig. 7. In this figure, line A
indicates the attenuation response employing the trans-
formerless matching network designed by the method pro-
posed in this paper, line B indicates the response employ-
ing the optimum broad-band matching network with an
ideal transformer (K = 0.9980258), line C indicates the
response employing a simple 1:vy2 ideal transformer, and
line D indicates the response without matching network.

Example 2

For the series RC load of R; =100 € and C; =20 pF,
design a third-order Butterworth response matching net-
work without an ideal transformer. The internal resistance
of the generator is 7,=50 @ and the cutoff radian
frequency is w,=10° rad/s.

In this case, we can achieve unity gain because the
inequality

20 R k™ sin(7/2n) =v2 >1

is satisfied when we set
k=yR, /1, =V2.

The maximum attainable gain K is unity and the needed
back-end impedance Z,,(s) is

222(s)
0.8284271 +0.8284271s +1.828427s2 +1.414214s>
~ 2.8284275 +2.828427s” +1.4142145° + 0.78985465°
(20)
The line length of the PTL is calculated to be / =17.57359

cm, considerably shorter than 47.12389 cm, the quarter-
wave length of the cutoff frequency.
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The ordinary design method also allows unity gain, but
the resulting matching network will contain an ideal trans-
former with a transformation ratio of 1:v2 unless we
settle for a reduced gain of

4r,R; 8
K=———5= e 0.8888889.
(RL+ rg)

(21)

Equation (21) gives the maximum gain when the generator
is connected to the load directly.

V. CONCLUSIONS

In this paper we have presented a simple technique for
designing a transformerless high-pass impedance matching
network having a Butterworth response of arbitrary order
using a parabolic tapered transmission line. The PTL
operates as an ideal transformer, as given by its equivalent
circuit. We have also shown.design curves calculated from
the gain—-bandwidth restriction.

Parallel RL loads are dual to series RC loads and may
be treated in a dual manner by using the reciprocal para-
bolic tapered transmission line. Other transducer power
gain response, such as Chebyshev, may be treated by
similar techniques.
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